NASA's findings suggest Mars even more Earth-like than previously believed

Before you go, we thought you'd like these...
Before you go close icon
NASA's Findings Suggest Mars Even More Earth-Like Than Previously Believed

NASA's Curiosity rover has been exploring the Gale Crater on Mars since 2012, and in that time has come up with some astounding discoveries that suggest the Red Planet was somewhat Earth-like in its earlier times.

The rover has come through again, this time detecting significant amounts of manganese oxides inside of mineral veins.

Said researcher Nina Lanza of New Mexico's Los Alamos National Laboratory, "The only ways on Earth that we know how to make these manganese materials involve atmospheric oxygen or microbes. Now we're seeing manganese oxides on Mars, and we're wondering how the heck these could have formed?"

She further notes, "One potential way that oxygen could have gotten into the Martian atmosphere is from the breakdown of water when Mars was losing its magnetic field. It's thought that at this time in Mars' history, water was much more abundant."

A combination of that weakened magnetic field, ionizing radiation, and low gravity may have both split the water into its separate elements and rendered the Red Planet incapable of holding onto its hydrogen ions, leaving only the oxygen to linger.

Lanza does admit, "It's hard to confirm whether this scenario for Martian atmospheric oxygen actually occurred."

RELATED: Check out the sunset on Mars, via Mars rover Curiosity: NASA

12 PHOTOS
Sunset on Mars, Mars rover, Curiosity, NASA
See Gallery
Sunset on Mars, Mars rover, Curiosity, NASA
(Photo via NASA/JPL-Caltech/MSSS)
This image sent by NASA’s Opportunity rover on Wednesday, Jan. 7, 2015 shows a view from atop a Martian hill. Opportunity will spend several days at the summit making pictures that engineers will stitch into a color panorama. (AP Photo/NASA)
This image sent by NASA’s Opportunity rover on Wednesday, Jan. 7, 2015 shows a view from atop a Martian hill. Opportunity will spend several days at the summit making pictures that engineers will stitch into a color panorama. (AP Photo/NASA)
This image sent by NASA’s Opportunity rover on Wednesday, Jan. 7, 2015 shows a view from atop a Martian hill. Opportunity will spend several days at the summit making pictures that engineers will stitch into a color panorama. (AP Photo/NASA)

Rover Takes Self Portrait

(Photo: NASA/Flickr)

Curiosity Parachute Landing Spotted by NASA Orbiter [detail]

(Photo via NASA/Flickr)

IN SPACE - SEPTEMBER 2: In this handout image provided by NASA/JPL-Caltech/MSSS, and captured by NASA's Curiosity rover, a rock outcrop called Link pops out from a Martian surface that is elsewhere blanketed by reddish-brown dust, showing evidence for an ancient, flowing stream, September 2, 2012. The fractured Link outcrop has blocks of exposed, clean surfaces. Rounded gravel fragments, or clasts, up to a couple inches (few centimeters) in size are in a matrix of white material. Many gravel-sized rocks have eroded out of the outcrop onto the surface, particularly in the left portion of the frame. The outcrop characteristics are consistent with a sedimentary conglomerate, or a rock that was formed by the deposition of water and is composed of many smaller rounded rocks cemented together. Water transport is the only process capable of producing the rounded shape of clasts of this size. (Photo by NASA/JPL-Caltech/MSSS via Getty Images)
IN SPACE - SEPTEMBER 14: This handout image provided by NASA/JPL-Caltech/MSSS, and captured by NASA's Curiosity rover, shows evidence for an ancient, flowing stream at the rock outcrop pictured here September 14, 2012, and a few other sites on Mars, which the science team has named 'Hottah' after Hottah Lake in Canada's Northwest Territories. This geological feature on Mars is exposed bedrock made up of smaller fragments cemented together, or what geologists call a sedimentary conglomerate. Scientists theorize that the bedrock was disrupted in the past, giving it the titled angle, most likely via impacts from meteorites. (Photo by NASA/JPL-Caltech/MSSS via Getty Images)
MARS - SEPTEMBER 19: In this handout from NASA/JPL-Caltech, a rock that is approximately 10 inches (25 centimeters) tall and 16 inches (40 centimeters) wide sits in front of NASA's Mars rover Curiosity September 19, 2012 on Mars. According to NASA, the rover team chose the rock, that has been named Jake Matijevic, as the first taget to be examined by Curiosity's contact instruments. Jake Matijevic was a surface operations systems chief engineer for the Mars Science Laboratory Project and the Curiosity rover. (Photo by NASA/JPL-Caltech via Getty Images)
IN SPACE - FEBRUARY 3: In this handout image provided by NASA, a self-portrait of the Mars rover Curiosity combines dozens of exposures taken by the rover's Mars Hand Lens Imager (MAHLI) during the 177th Martian day, or sol, of Curiosity's work on February 3, 2013 on the planet Mars. Curiosity landed on the planet on August 5, 2012. (Photo by NASA/JPL-Caltech/MSSS via Getty Images)
These are the first two full-resolution images of the Martian surface from the Navigation cameras on NASA's Curiosity rover, which are located on the rover's 'head' or mast. The rim of Gale Crater can be seen in the distance beyond the pebbly ground. The topography of the rim is very mountainous due to erosion. The ground seen in the middle shows low-relief scarps and plains. The foreground shows two distinct zones of excavation likely carved out by blasts from the rover's descent stage thrusters. (NASA/MCT via Getty Images)
of
SEE ALL
BACK TO SLIDE
SHOW CAPTION +
HIDE CAPTION

Read Full Story

Sign up for Breaking News by AOL to get the latest breaking news alerts and updates delivered straight to your inbox.

Subscribe to our other newsletters

Emails may offer personalized content or ads. Learn more. You may unsubscribe any time.

From Our Partners